
 



To understand human gaze, experimenter typically 
manipulates gaze via instructions, or manipulates  
stimuli to attract gaze. 
 
In natural behavior, selection and timing under subjectÕs  
control. 
 
Thus we must look at natural behavior in order to 
understand the factors controlling gaze. 
 
Such understanding is necessary in order to make 
inferences from gaze behavior. 
 
Thus applications of pervasive eye tracking will depend  
very heavily on driving forces behind gaze control. 
 
 
 



 

FACTORS THAT CONTROL GAZE. 
 
 

  TASK 
  

  REWARDS 
  

  UNCERTAINTY 
  

  PRIOR BELIEFS/ Memory 
   
  IMAGE 

 



Potential seat  

Obstacle avoidance  

Heading  

Acquisition of visual information is goal driven 

Fixations tightly linked to actions: Land (2004); Hayhoe & Ballard (2005) etc 





In natural behavior, both ÒwhenÓ and ÒwhereÓ matter. 

What underlies the momentary decisions of where/when to look? 



Immediate behavioral goals govern gaze target selection. 
 
-  where to attend, when to attend, and what information  
to get. (Plate for knife placement, edge of slice for grasp etc.) 

How does this come about? 
 
Hypothesis:  task control results from reward-based learning. 



target selection 
depends on expected value  

signals to muscles 

Reward sensitivity of Saccadic Circuitry 
Neurons at all levels of saccadic eye movement circuitry are sensitive to 
reward ( eg juice).  
Neural basis for reinforcement learning models of gaze behavior. (Schultz, 
2000) 

Dopaminergic neurons 
in basal ganglia signal 
expected reward 

LIP 

A reward expectation signal modulates  
the gain of visual neurons in LIP.  



Reward effects in neurons have been observed with very simple choice  
response paradigms eg Òlook to left target for a drop of juiceÓ. 
 
But eye movements are for getting information and are not directly  
rewarded in natural vision. 
 
Need evidence for task (reward-based) control of gaze/attention in  
natural behavior. 

What about human behavior? Any evidence for role of reward? 



Gaze allocation when walking in a real environment 
 
Things to do: control direction, avoid obstacles, foot placement, 
characterize surroundings etc   Normal vision involves sets of behavioral goals, or  
sub-tasks Ð need to allocate attention effectively between sub-tasks. 

Portable ASL eyetracker 
Oval path around large room 

pedestrians 

(Jovancevic & Hayhoe, 2009 J Neurosci) 



How are gaze targets chosen? 

Dynamic environments are tricky Ð timing of fixations more 
critical than in static scenes.  



Occasionally some pedestrians either stopped  for 1 sec 
or veered  on a collision course with the subject 
 
3 pedestrians behaved in characteristic ways: 
 
  Rogue  pedestrian Ð always stops/veers 
  Safe pedestrian Ð never stops/ veers 
  Unpredictable  pedestrian Ð stops/veers 50% of time 
 

 

Manipulation of behavioral relevance/reward weight 

Reward (negative) = potential collision 
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Fixation probability depends on behavioral relevance  
(subjective value) and probability of veering/stopping 

Veering (risky) 

Stopping (less risky) 

Safe Unpredictable Rogue 

(Probability is computed during period in the field of view, not just 
 collision interval.) 
 



    Almost all of the fixations on the Rogue were made 
before  the veering onset (92%). 

 
   Thus gaze, and attention are anticipatory, based on 

history of events, not a result of what the pedestrian  

    is actually doing. 



 

Gaze behavior based on expectation, not on veering event. 

Probability of fixating unpredictable pedestrian similar, 
whether or not pedestrian actually veers on that trial. 
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Gaze behavior changes rapidly  with experience (4-5 encounters):  
priorities re-allocated depending on behavioral relevance 

prior prior 

Fixations on Rogue get longer/earlier, on Safe shorter/later 
 
Note Ð 5 subjects Ð similar behavior 
 

Lap 1-4 Lap 5-8 Lap 9-12 Lap 1-4 Lap 9-12 Lap 5-8 

Attention depends on reward probability (expected value) 

N=5 

 Duration  Latency 



Gaze priorities change when another task is added. 

0

200

400

600

800

1000

1 2 3

F
ix

a
ti

o
n

 D
u

ra
ti

o
n

s
 (

m
s
)

0

200

400

600

800

1000

1 2 3

La
te

nc
y 

(m
s)

0 

200 

400 

600 

800 

1000 

1 2 3 

Fi
xa

tio
n 

D
ur

at
io

ns
 (m

s)
 

Early Middle Late 

Safe 

Unpredictable 

Rogue 

0 

200 

400 

600 

800 

1000 

1 2 3 

La
te

nc
y 

(m
s)

 

Early Middle Late 

Unpredictable 

Safe 

Rogue 

added task 

original task 

All fixations short duration, fixations on Safe deferred. 

SHARING ATTENTION BETWEEN TASKS 

Thus there must be some mechanism for determining how gaze is shared 



 Fixations modulated by task importance/value (reward, 
and probability of reward).  
 
Subjects learn the statistical structure of the 
world and allocate attention and gaze accordingly. 
 
Control of gaze, is proactive, not reactive ie based on 
estimated state, not on the current image. 
 
Subjects behave very similarly despite unconstrained  
environment and absence of instructions. 



Neural reward machinery provides a basis for RL models. 
 
RL models might explain how tasks influence human gaze. 

Reinforcement Learning 



   Virtual Humanoid has 
a small library of 
simple visual  
behaviors (modules): 
Ð  Sidewalk Following 
Ð  Picking Up Blocks 

Ð  Avoiding Obstacles 

 

Each behavior uses a limited,  task-relevant  selection of visual 
information from scene. 
Behaviors have different priority/ reward value. 

Walter the Virtual Humanoid 

Sprague, Ballard, & Robinson TAP (2007) 

R L Modeling of Gaze Control 



obstacles  

sidewalk  

litter  

Controlling the Sequence of fixations 

Gaze target is chosen based on both reward and uncertainty. 



Evidence that gaze scheduling depends on reward-weighted 
uncertainty. 

Work by Brian Sullivan. 



Instructions: 
 
 
 -   Keep a constant speed 
 
 or 
 
-  Keep a constant distance behind a leader car 

Noise  was added to the gas pedal so that speed fluctuated. 
This should lead to greater uncertainty about speed, and lead 
to more frequent updates using gaze. 
 
The Task manipulation varies implicit reward. 



!

Schematic of the Sprague/Ballard model 

Sullivan, 2012 



Subjects must schedule looks to leader and speedometer in order to  
maintain correct speed or distance. 
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How does task and noise affect gaze allocation? 

Subjects  look more at the Speedo in the Constant Speed task and more at  
the Lead Car in the Follow task. 
Noise increases Speedo looks and reduces Leader looks in Constant Speed condition. 

More looks 
on Speedo 

Fewer looks 
on Leader 
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Tradeoff between task priority and uncertainty. 
 
Qualitatively consistent with model that selects a gaze target 
on basis of reward-weighted uncertainty.  
 
Reduction of visual uncertainty is gated by behavioral relevance .   



 
FACTORS THAT CONTROL 
GAZE. 
 
 

  TASK 
  

  REWARDS 
  

  UNCERTAINTY 
  

  PRIOR BELIEFS/ Memory 
   
  IMAGE 

 



 

In walking paradigm, gaze behavior was anticipatory. 
Fixations on Rogue almost always occurred before the 
relevant stimulus event.  

Fixations were based on predicted behavior. 

Why? 

Sensory delays make early planning of eye movements 
important/necessary. 



What is the basis of prediction? Idea of Internal Models 

 

In the case of body movements, forward models of bodyÕs dynamics 
predict somatosensory consequences of movements (Wolpert et al, 
1998). 

 

P 

P 
^  

Motor system 

Forward model 

u(t) y(t) 

Motor command Sensory feedback 
(reafference) 

Predicted sensory  
feedback 
 

y(t) ^ Efference 
copy 

Rapid comparison of actual with expected feedback circumvents delays 



Internal models of visual world? 

For example, use looming information to compute Òtime-to-contactÓ 
to control interception/braking; Òfocus of expansionÓ to control 
heading.  
 
That is, extract a Òcontrol variableÓ 

Many actions can be controlled by the momentary visual signals in the 
image. (Warren, 2006) 

Advantage: computational efficiency. 

Evidence to the contrary.. 



In natural movements, do we need internal models of visual state 
to generate eye movements in advance of events in the image? 
 
What is the nature of these internal models?  
 



Virtual racquetball:  
Nvis helmet, Arrington eye-tracker, PhaseSpace head/hand/racquet 
tracking, ODE to control ball and racquet interactions 

Work by Gabe Diaz 





Balls varied in vertical velocity and elasticity.  
Velocity varied from trial to trial, elasticity was constant within a block. 
Height after bounce predictable from current trial and previous trials  
within a block. 

High elasticity 

Low elasticity Range of starting 
locations and bounce 
locations  



Saccade to a location ahead of the bounce 



Ball location relative to gaze 
at time of bounce 

 
 

SubjectsÕ gaze predicts location of ball after it bounces. Prediction is based 
 on knowledge of elasticity, (based on history) plus velocity.  

Ball location relative to gaze 150 msec 
later. 
 
Ss adjust predicted gaze point for  
elasticity and velocity. 

 
 



High elasticity 

Low elasticity 

Location of saccade precisely adjusted to 
compensate for  elasticity and pre-bounce velocity 



Vertical velocity 

 
Gaze to ball distance at minimum 

Gaze to ball distance at time of bounce 

High elasticity 

Low elasticity 

Predictive Saccades: Location 

Ball then passes close to gaze. 
Location of saccade precisely 
adjusted to compensate for  
elasticity and pre-bounce velocity 

Subjects saccade to location  
above the bounce point. 

Vertical velocity 



High elasticity 

Low elasticity 

Predictive Saccades: Timing 

Earlier saccade for more elastic balls (prior trials).  
Earlier saccade for high velocity balls (current trial). 

Vertical velocity 



Anticipatory saccades reveal that gaze is planned for a predicted  
state of the world. 

Internal Visual Models Allow Prediction 

Predictions must be based on some kind of internal model/prior of 
visual events.  



What do we know about the internal model? Evidence suggests it is 
high level and complex (angle, speed, elasticity, 3D, gravity).  
 
In addition to mitigating the problem of visual delays, another value of 
experience-based internal visual models is that it allows better 
coordination of eye, head, arm, and body movements.  
 
In reaching, evidence for the optimal Bayesian integration of current 
visual information with visual priors, (Koerding & Wolpert, 2004; Brouwer & Knill, 
2007; Tassinari et al, 2006)  

 
Perhaps a similar optimal weighting occurs with saccadic eye 
movements. Ie targeting has an image based and a memory based 
Component. 

Internal Models 



likelihood 

prior 

Wolpert, 2005 

posterior 

Hypothesis: Bayesian prediction of future state 



Complex behavior can be broken down into sub-tasks or modules. This is 
consistent with observations of natural behavior. 
 
Execution of sub-tasks/modules is learned and is governed by reward and  
uncertainty about task-relevant information.  
Supported by gaze allocation in walking and driving. 
 
Learnt statistics/ priors about world state govern allocation of attention.  
Supported by both walking and racquetball. 
 

Summary so far 



What is the role of the image? 



Image properties  eg contrast, edges, chromatic saliency can 
account for some fixations when viewing images of scenes (eg 
Itti & Koch, 2001; Parkhurst & Neibur, 2003). (Also attentional capture by 
sudden onsets etc Theeuwes et al 2001.) 



Important stimuli may not be salient. 
 
Salient stimuli may not be important. 
 
ie Image properties wonÕt necessarily serve behavior 
 
In free-viewing, the constraints are weak, and inferences 
about cognitive state are difficult. 
 
 

How important is this in natural vision? 
!



However, need to be able to notice important stimuli that 
are not on the current task agenda. 
 
Possible solution: attention may be attracted to deviations  
from expectations based on memory representation of scene. 
 
Most scenes are highly familiar. Therefore extensive memory 
representations can be built up and used as a basis for  
expectations.  
 



Hacer Uke-Karacan 2007 





!
A mechanism where gaze is attracted by deviations from 
expectation may serve as a useful adjunct to task-driven 
fixations. 
 
Such a mechanism will be more robust than image saliency. 
 !
!



How can information about gaze be used? 

Provides a safe environment for testing effectiveness of  
rehabilitation strategies in clinical situations. 



Hemianopic subject: blind in left visual field as a consequence 
of damage to right visual cortex 

Subject detects a moving object in the good field. 



Subject misses a moving object in the bad field. 



 
By measuring the probability of detection both pre and post 
training one can evaluate the effectiveness of rehabilitation 
methods.  



Importance of the Paradigm 

ÒFree viewingÓ paradigm may not reflect what happens 
in natural behavior. 



!

Example from schizophrenic patients 

When viewing static displays, schizophrenic patients make fewer 
saccades around the display and have longer fixations. 
 
Work by Boucart & Delerue shows much more normal patterns in the  
context of behavior.  



Gaze may be tightly orchestrated by the task Ð eg racquetball  
 
In other cases, gaze is less well constrained, but still regular 
-  eg driving, walking. 

Other cases such as looking at pictures: 
  

 - optimality is not well defined 
 

 - fixations do not map very clearly onto cognitive operations 



 Gaze behavior is learned via reward machinery of brain. 
 
This is consistent with RL models of gaze control that  
Incorporate uncertainty. 
 
Scenes are learned also and are often very familiar. 
 
How much can be learnt from gaze behavior will depend on 
how tightly the context determines optimal behavior 
eg racquetball versus free-viewing.   
 
In well-constrained contexts subjects behave similarly, and  
performance is stable. 
 
Many potential applications eg clinical for eye tracking.  
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